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1. Introduction

Chern and Kuiper [6] in 1952 defined a distribution on a Riemannian manifold
M which assigns to each point x ∈ M , the subspace

NR(x) = {X ∈ TxM : R(X, Y ) = 0, ∀Y ∈ TxM},

where R is the curvature of the Riemannian connection on M . It is called the nullity
space at x. The distribution defined by the subspace Nx at each point x of M is called
the nullity distribution N of the Riemannian manifold M . The dimension µx of Nx

is called the index of nullity at x. Chern and Kuiper showed that if µx is constant
in a neighborhood then N constitutes a completely integrable distribution there, and
that the leaves of the resulting foliation are flat. Later, Maltz [12] showed that the
leaves are also totally geodesic.

In 1972, Akbar Zadeh [2], [3] extended this work to Finsler geometry adopting the
pullback approach to global Finsler geometry. He studied the nullity distribution of
the (classical) curvature of Cartan connection. Recently, Bidabad and Refie-Rad [4]
studied a more general case called k-nullity distribution in Finsler geometry. On the
other hand, in 1982, Youssef [14], [15] studied the nullity distributions of the curvature
tensors of Barthel connection and Berwald connection, adopting the Klein-Grifone
approach to global Finsler geometry.

In the present paper, we investigate the nullity distribution of the three curvature
tensors of Cartan connection adopting the Klein-Grifone approach [8], [9], and
[10]. The paper is organized as follows. In the first section, we give the necessary
material that will be needed throughout the present work. In particular, we give a
brief account on the Klein-Grifone approach to global Finsler geometry. In the second
section, we focus our attention on the most important properties and formulas related
to the curvature tensors of Cartan connection. In the third section, we investigate
the nullity distribution (ND) NR of the h-curvature tensor R of Cartan connection,
the nullity spaces being subspaces of the horizontal space. We show that the ND
NR is included in the ND of the curvature of Barthel connection and we show, by
an example, that this inclusion is proper. We show that the ND NR is completely
integrable and the leaves of the nullity foliation are auto-parallel and hence totally
geodesic submanifolds. In the Fourth and fifth sections, we study the ND’s of the
hv-curvature and v-curvature of Cartan connection. We show through examples that
these ND’s are not completely integrable. Nevertheless, we investigate necessary and
sufficient conditions for such distributions to be completely integrable.

It should be noted that in the pullback approach ([2], [3]) the ND of the classical
curvature of Cartan connection is completely integrable and, consequently, the ND’s
of the h-curvature, hv-curvature and v-curvature are completely integrable. However,
in the Klein-Grifone approach the situation is different: the ND of the h-curvature is
completely integrable whereas the ND’s of the hv-curvature and v-curvature are not.

Throughout the paper, we give concrete examples whenever the situation needs.
Moreover, we study ND’s related to certain special Finsler spaces relevant to the
situation under consideration.
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2. Notation and Preliminaries

In this section, we give a brief account of the basic concepts of the Klein-Grifone
approach to global Finsler geometry. For more details, we refer to [8], [9], and [10].
We make the assumption that the geometric objects we consider are of class C∞.
The following notations will be used throughout this paper:
M : a real differentiable manifold of finite dimension n and of class C∞,
F(M): the R-algebra of differentiable functions on M ,
X(M): the F(M)-module of vector fields on M ,
πM : TM −→ M : the tangent bundle of M ,
π : T M −→ M : the subbundle of nonzero vectors tangent to M ,
V (TM): the vertical subbundle of the bundle TTM ,
iX : the interior product with respect to X ∈ X(M),
df : the exterior derivative of f ,
dL := [iL, d], iL being the interior derivative with respect to a vector form L,
LX : the Lie derivative with respect to X ∈ X(M).

We have the following short exact sequence of vector bundles, relating the tangent
bundle T (TM) and the pullback bundle π−1(TM):

0 −→ π−1(TM)
γ

−→ T (TM)
ρ

−→ π−1(TM) −→ 0,

where the bundle morphisms ρ and γ are defined respectively by ρ := (πT M , dπ) and
γ(u, v) := ju(v), where ju is the natural isomorphism ju : TπM (v)M −→ Tu(TπM (v)M).
The vector 1-form J on TM defined by J := γ ◦ρ is called the natural almost tangent
structure of TM . The vertical vector field C on TM defined by C := γ ◦ η, where η

is the vector field on π−1(TM) given by η(u) = (u, u), is called the fundamental or
the canonical (Liouville) vector field.

In this work, we shall need the evaluation of the Frölicher-Nijenhuis bracket in
some special cases [7]:

If L is a vector ℓ-form and X ∈ X(M), then, for all Y1, ..., Yℓ ∈ X(M),

[X,L](Y1, ..., Yℓ) = [X,L(Y1, ..., Yℓ)]−
ℓ

∑

i=1

L(Y1, ..., [X, Yi], ..., Yℓ).

In particular, if L is vector 1-form,

[X,L]Y = [X,LY ]− L[X, Y ].

If K and L are vector 1- forms, then

[K,L](X, Y ) = [KX,LY ] + [LX,KY ] +KL[X, Y ] + LK[X, Y ]

−K[LX, Y ]−K[X,LY ]− L[KX, Y ]− L[X,KY ].

In particular, the vector 2-form NK := 1
2
[K,K] is said to be the Nijenhuis torsion of

the vector 1-form K:

NK :=
1

2
[K,K](X, Y ) = [KX,KY ] +K2[X, Y ]−K[KX, Y ]−K[X,KY ]. (2.1)
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One can show that the natural almost tangent structure J has the properties:

J2 = 0, [J, J ] = 0, [C, J ] = −J, Im(J) = Ker(J) = V (TM), (2.2)

A scalar p-form ω on TM is semi-basic if iJXω = 0, ∀X ∈ X(TM). A vector
ℓ-form L on TM is semi-basic if JL = 0 and iJXL = 0, ∀X ∈ X(TM).

A scalar p-form ω on TM is homogenous of degree r if LCω = rω. A vector
ℓ-form L on TM is homogenous of degree r, denoted h(r), if [C,L] = (r − 1)L. It is
clear that J is h(0).

A semispray on M is a vector field S on TM , C∞ on TM , C1 on TM , such that
JS = C. A semispray S which is homogeneous of degree 2 ([C, S] = S) is called a
spray.

A nonlinear connection on M is a vector 1-form Γ on TM , C∞ on T M , C0 on
TM , such that

JΓ = J, ΓJ = −J.

The vertical and horizontal projectors v and h associated with Γ are defined re-
spectively by v := 1

2
(I − Γ), h := 1

2
(I + Γ). Thus Γ gives rise to the direct sum

decomposition TTM = V (TM) ⊕ H(TM), where V (TM) := Im v = Ker h is the
vertical bundle and H(TM) := Imh = ker v is the horizontal bundle induced by
Γ. An element of V (TM) (resp. H(TM)) will be denoted by vX (resp. hX). We
have Jv = 0, vJ = J, Jh = J, hJ = 0. A nonlinear connection Γ is homogeneous
if [C,Γ] = 0. To each nonlinear connection Γ, one can associate a semispray S which
is horizontal with respect to Γ, namely, S = hS ′, where S ′ is an arbitrary semispray.
Moreover, if Γ is homogeneous, then its associated semispray is a spray.

The torsion t of a nonlinear connection Γ is the vector 2-form on TM defined by
t := 1

2
[J,Γ]. The curvature of Γ is the vector 2-form on TM defined by R := −1

2
[h, h].

Associated with Γ, an almost complex structure F (F 2 = −I) is defined by FJ = h

and Fh = −J . This F defines an isomorphism of TzTM for all z ∈ TM .

Definition 2.1. [10] A Finsler space of dimension n is a pair (M,E), where M is a
differentiable manifold of dimension n and E is a map

E : TM −→ R,

called the energy function, satisfying the axioms:

(a) E(u) > 0 for all u ∈ T M and E(0) = 0,

(b) E is C∞ on T M , C1 on TM ,

(c) E is homogenous of degree 2: LCE = 2E,

(d) The exterior 2-form Ω := ddJE, called the fundamental form, has maximal rank.

Theorem 2.2. [10] Let (M,E) be a Finsler space. The vector field S ∈ X(TM)
defined by iSΩ = −dE is a spray. Such a spray is called the canonical spray associated
with (M,E).
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Now, we give a fundamental result which ensures the existence and uniqueness
of a remarkable nonlinear connection.

Theorem 2.3. [10] On a Finsler space (M,E), there exists a unique conservative
(dhE = 0) homogeneous nonlinear connection with zero torsion. It is given by:

Γ = [J, S],

where S is the canonical spray. Such a connection is called the canonical connection,
Barthel connection or Cartan nonlinear connection associated with (M,E).

It should be noted that the semi-spray associated with the Barthel connection is
a spray, which is the canonical spray.

3. Berwald and Cartan connections

In this section, we present the necessary material, concerning Berwald and Cartan
connections, that will be needed throughout the present work. For more details, we
refer to [9] and [15].

Theorem 3.1. [9] For a Finsler space (M,E), there exists a unique linear connection
◦

D on TM satisfying the following properties:

(a)
◦

DJ = 0. (b)
◦

DC = v.

(c)
◦

DΓ = 0 (⇐⇒
◦

Dh =
◦

Dv = 0). (d)
◦

DJXJY = J [JX, Y ].

(e)
◦

T (JX, Y ) = 0,

where h and v are the horizontal and vertical projectors of Barthel connection and
◦

T

is the (classicl) torsion of
◦

D. This connection is called the Berwald connection.

The explicit expression of
◦

D is given by:
◦

DJXJY = J [JX, Y ],
◦

DhXJY = v[hX, JY ],
◦

DF = 0.











(3.1)

Lemma 3.2. The Berwald connection has the property that
◦

T (hX, hY ) = R(X, Y ),

where R is the curvature of Barthel connection.

Let (M,E) be a Finsler space and Ω := ddJE. The map g defined by

g(JX, JY ) := Ω(JX, Y ), ∀ X, Y ∈ T (TM)

defines a metric on V (TM). This metric can be extended to a metric g on T (TM)
defined by the formula:

g(X, Y ) = g(JX, JY ) + g(vX, vY ) = Ω(X,FY ). (3.2)
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Theorem 3.3. [9] For a Finsler space (M,E), there exists a unique linear connection
D on TM satisfying the following properties:

(a) DJ = 0. (b) DC = v.

(c) DΓ = 0 (⇐⇒ Dh = Dv = 0). (d) Dg = 0.

(e) T (JX, JY ) = 0. (f) JT (hX, hY ) = 0.

This connection is called the Cartan connection.

The explicit expression of D is given by:

DJXJY =
◦

DJXJY + C(X, Y ),

DhXJY =
◦

DhXJY + C′(X, Y ),

DF = 0,











(3.3)

where C and C′ are the scalar 2-forms on TM defined by

Ω(C(X, Y ), Z) =
1

2
(LJX(J

∗g))(Y, Z), Ω(C′(X, Y ), Z) =
1

2
(LhXg)(JY, JZ),

with (J∗g)(Y, Z) = g(JY, JZ).
The tensors C and C′ will be called the first and second Cartan tensors respec-

tively. They are semi-basics, symmetric and

C(X,S) = C′(X,S) = 0. (3.4)

We have the following lemmas.

Lemma 3.4. The (h)h-torsion T (hX, hY ) and (h)v-torsion T (hX, JY ) of Cartan
connection are given respectively by

T (hX, hY ) = R(X, Y ), T (hX, JY ) = (C′ − FC)(X, Y ),

where R is the curvature of Barthel connection.

Lemma 3.5. The h-curvature R, hv-curvature P and v-curvature Q of Cartan con-
nection are given respectively by:

(a) R(X, Y )Z =
◦

R(X, Y )Z + (DhXC
′)(Y, Z)− (DhY C

′)(X,Z) + C′(FC′(X,Z), Y )
− C′(FC′(Y, Z), X) + C(FR(X, Y ), Z).

(b) P (X, Y )Z =
◦

P (X, Y )Z + (DhXC)(Y, Z)− (DJY C′)(X,Z) + C(FC′(X,Z), Y )
+ C(FC′(X, Y ), Z)− C′(FC(Y, Z), X)− C′(FC(X, Y ), Z).

(c) Q(X, Y )Z = C(FC(X,Z), Y )− C(FC(Y, Z), X),

where
◦

R and
◦

P are respectively the h-curvature and hv-curvature of Berwald connec-
tion.
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Lemma 3.6. For Cartan connection, the following properties hold:

(a) R(X, Y )S = R(X, Y ).

(b) P (X, Y )S = C′(X, Y ).

(c) P (S,X)Y = P (X,S)Y = 0.

(d) Q(S,X)Y = Q(X,S)Y = Q(X, Y )S = 0.

Lemma 3.7. The Bainchi identities for Cartan connection are given by:

(a) SX,Y,Z{R(X, Y )Z} = SX,Y,Z{C(FR(X, Y ), Z)}.

(b) SX,Y,Z{Q(X, Y )Z} = 0.

(c) C(FR(X, Y ), Z) = R(FC(X,Z), Y )−R(FC(Y, Z), X).

(d) SX,Y,Z{(DhXR)(Y, Z)} = SX,Y,Z{C′(FR(X, Y ), Z)}.

(e) SX,Y,Z {(DhXR)(Y, Z)} = SX,Y,Z {P (X,FR(Y, Z))}.

(f) (DhXP )(Y, Z)− (DhY P )(X,Z) + (DJZR)(X, Y ) = P (X,FC′(Y, Z))
− P (Y, FC′(X,Z)) +R(FC(Y, Z), X)−R(FC(X,Z), Y )−Q(FR(X, Y ), Z).

(g) (DhXQ)(Y, Z)− (DJY P )(X,Z) + (DJZP )(X, Y ) = P (FC(X, Y ), Z)
− P (FC(Z,X), Y )−Q(FC′(X, Y ), Z) +Q(FC′(Z,X), Y ).

(h) SX,Y,Z{(DJXQ)(Y, Z)} = 0,

where SX,Y,Z is the cyclic sum over the vector fields X, Y and Z.

4. Nullity distribution of Cartan h-curvature

We are now in a position to study the nullity distributions associated to Cartan
connection. Firstly, we study the nullity distribution of the h-curvature tensor. It
should be noted that the nullity distributions of Barthel and Berwald connections
have been investigated in [14] and [15].

We need the following lemma for subsequent use.

Lemma 4.1. For all X, Y ∈ X(TM), we have

(a) [JX, JY ] = J(DJXY −DJYX).

(b) [hX, JY ] = J(DhXY )− h(DJYX)− (C′ − FC)(X, Y ).

(c) [hX, hY ] = h(DhXY −DhYX)−R(X, Y ).
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Proof.
(a) Using (3.1) and (3.3), by the symmetry of C and since [J, J ] = 0, J2 = 0 and
DJ = 0, we get

J(DJXY −DJYX) = DJXJY −DJY JX

=
◦

DJXJY + C(X, Y )−
◦

DJY JX − C(Y,X)

= J [JX, Y ]− J [JY,X ]

= [JX, JY ].

(b) Using (3.1) and (3.3), by the symmetry of C and since DJ = Dh = DF = 0, we
obtain

J(DhXY )− h(DJYX) = DhXJY −DJY hX

=
◦

DhXJY + C′(X, Y )−
◦

DJY hX − FC(Y,X)

= v[hX, JY ]− h[JY,X ] + (C′ − FC)(X, Y )

= [hX, JY ] + (C′ − FC)(X, Y ).

(c) Again using (3.1) and (3.3), by the symmetry property of C′, we have

h(DhXY −DhYX) = DhXhY −DhY hX

=
◦

DhXhY + FC′(X, Y )−
◦

DhY hX − FC′(Y,X)

= Fv[hX, JY ] + Fv[JX, hY ].

As the torsion of Γ vanishes, then 0 = t(X, Y ) = v[JX, hY ]+v[hX, JY ]−J [hX, hY ],
from which Fv[JX, hY ] + Fv[hX, JY ] = FJ [hX, hY ] = h[hX, hY ]. Consequently,

h(DhXY −DhYX) = h[hX, hY ] = [hX, hY ]− v[hX, hY ] = [hX, hY ] +R(X, Y ),

where we have used the identity R(X, Y ) = −v[hX, hY ] [14].

Remark 4.2. It is to be noted that the identity R(X, Y ) = −v[hX, hY ] shows that
the Lie bracket of two horizontal vector fields is horizontal if and only if the curvature
R vanishes. This means that a necessary and sufficient condition for the horizontal
distribution to be completely integrable is that R vanishes. This fact can also be
deduced from Lemma 4.1 (c) above.

Definition 4.3. Let R be the h-curvature tensor of Cartan connection. The nullity
space of R at a point z ∈ TM is the subspace of Hz(TM) defined by

NR(z) := {X ∈ Hz(TM) : R(X, Y ) = 0, ∀Y ∈ Tz(TM)}.

The dimension of NR(z), denoted by µR(z), is the index of nullity of R at z.
If the index of nullity is constant, then the map NR : z 7→ NR(z) defines a

distribution NR of dimension µR called nullity distribution of R.
Any vector field belonging to the nullity distribution is called a nullity vector field.

Proposition 4.4. The nullity distribution NR has the following properties:
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(a) NR 6= φ.

(b) NR ⊆ NR, where NR is the nullity distribution of the curvature R.

(c) If Z ∈ NR, then R(X, Y )Z = C(FR(X, Y ), Z).

(d) If S ∈ NR, then R = 0.

(e) If X ∈ NR, then [C,X ] ∈ NR and consequently, [C,X ] ∈ NR.

Proof.
(b) Let X be a nullity vector field. We have

X ∈ NR =⇒ R(X, Y )Z = 0 ∀Y, Z ∈ X(TM)

=⇒ R(X, Y )S = 0 ∀Y ∈ X(TM)

=⇒ R(X, Y ) = 0 ∀Y ∈ X(TM)

=⇒ X ∈ NR.

(c) Let Z ∈ NR, then Z ∈ NR and by Lemma 3.7 (a), we have

SX,Y,Z{R(X, Y )Z} = SX,Y,Z{C(FR(X, Y ), Z)}.

Since R(Y, Z)X = R(Z,X)Y = 0 and R(Y, Z) = R(Z,X) = 0, the result follows.

(d) Let S ∈ NR, then by (c), we have R(X, Y )S = C(FR(X, Y ), S). Then, the result
follows from (3.4) and Lemma 3.6.

(e) Let X ∈ NR. By the identity DCR = 0 [9], we have

(DCR)(X, Y ) = 0,

which leads to
R(DCX, Y ) = 0.

Using (3.1) and (3.3), we have R([C,X ], Y ) = 0. Since h is h(1), then [C, h] = 0,
from which [C, hX ] = h[C,X ]. That is, [C, hX ] is horizontal. Hence, [C,X ] ∈ NR.
Consequently, by (b), [C,X ] ∈ NR.

It is important to note that the converse of property (b) of Proposition 4.4 is not
true in general, that is, NR 6⊂ NR. This is shown by the next example in which the
calculations are performed using MAPLE program.

Example 4.5. Let M = {x = (x1, x2, x3, x4) ∈ R
4 : x4 6= 0},

U = {(x, y) ∈ R
4 × R

4 : x4 6= 0; yi 6= 0, i = 1, ..., 4} ⊂ TM .
Let the energy function E be defined on the open subset U of TM by:
E = x4y1(y

3
2 + y33 + y34)

1/3. Then, we have:

Ω =
1

2(y32 + y33 + y34)
2/3

{−(y32 + y33 + y34) dx1 ∧ dx4 − y1y
2
2 dx2 ∧ dx4 − y1y

2
3 dx3 ∧ dx4

−2x4y
2
2 (dx1 ∧ dy2 + dx2 ∧ dy1)− 2x4y

2
3 (dx1 ∧ dy3 + dx3 ∧ dy1)

9



−2x4y
2
4 (dx1 ∧ dy4 + dx4 ∧ dy1)} −

2x4

(y32 + y33 + y34)
5/3

{y1y2(y
3
3 + y34) dx2 ∧ dy2

−y1y
2
2y

2
3 (dx2 ∧ dy3 + dx3 ∧ dy2)− y1y

2
2y

2
4 (dx2 ∧ dy4 + dx2 ∧ dy4)

+y1y3(y
3
2 + y34) dx3 ∧ dy3 − y1y

2
3y

2
4 (dx3 ∧ dy4 + dx4 ∧ dy3)

+y1y4(y
3
3 + y34) dx4 ∧ dy4}.

The identity iSΩ = −dE gives the following non-vanishing coefficients of the canonical
spray Si:

S2 =
3y2y4
4x4

, S3 =
3y3y4
4x4

, S4 = −
y32 + y33 − 2y34

4x4y4
.

The non-vanishing coefficients of Barthel connection Γi
j are:

Γ2
2 =

3y4
4x4

, Γ2
4 =

3y2
4x4

, Γ3
3 =

3y4
4x4

, Γ3
4 =

3y3
4x4

,

Γ4
2 = −

3y22
4x4y4

, Γ4
3 = −

3y23
4x4y4

, Γ4
4 =

y32 + y23 + 4y34
4x4y

2
4

.

The independent non-vanishing components of the curvature Ri
jk of Barthel connec-

tion are:

R2
23 =

9y23
16x2

4y4
, R2

24 = −
3(y32 + y23 + 5y34)

16x2
4y

2
4

,

R3
23 = −

9y22
16x2

4y4
, R3

34 = −
3(y32 + y23 + 5y34)

16x2
4y

2
4

,

R4
24 =

3y22(y
3
2 + y23 + 5y34)

16x2
4y

4
4

, R4
34 =

3y23(y
3
2 + y23 + 5y34)

16x2
4y

4
4

.

Now, let X ∈ NR, then X can be written in the form X = X1h1 + X2h2 +
X3h3+X4h4, where X

1, X2, X3, X4 are the components of the nullity vector X with
respect to the basis {h1, h2, h3, h4} of the horizontal space, where hi :=

∂
∂xi − Γm

i
∂

∂ym
,

i,m = 1, ..., 4. The equation R(X, Y ) = 0, ∀Y ∈ H(TM), is written locally in the
form

XjRi
jk = 0.

This is equivalent to the system of equations:

3y23X
3 − (y32 + y33 + 5y34)X

4 = 0,

y23X
2 = 0,

y22X
3 = 0.

From the above system, we have X1 = t1, t1 ∈ R and X2 = X3 = 0. Then, we
get (y32 + y33 + 5y34)X

4 = 0. Now, we have two cases, either y32 + y33 + 5y34 = 0 or
y32 + y33 + 5y34 6= 0. Firstly, if y32 + y33 + 5y34 6= 0, then X4 = 0 and thus µR = 1.
Secondly, if y32 + y33 + 5y34 = 0, then X4 = t4, t4 ∈ R and thus X = t1h1 + t4h4 and
µR = 2. We will be interested in the second case.
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Calculations using MAPLE give the coefficients of Cartan connection Γi
jk and so

the components of the h-curvature tensor Rh
ijk. Taking into account that y32 + y33 +

5y34 = 0, the independent non-vanishing components Rh
ijk are as follows:

R2
123 =

−9y23
32x2

4y1y4
, R3

123 =
9y22

32x2
4y1y4

, R1
223 =

−9y1y2y
2
3

64x2
4y

4
4

R2
223 =

−9y22y
2
3

128x2
4y

4
4

, R3
223 =

−9y2(4y
3
2 + 6y33)

256x2
4y

4
4

, R4
223 =

−45y2y
2
3

128x2
4y

3
4

,

R3
224 =

−108y2y3
256x2

4y
2
4

, R4
224 =

−3y2(y
3
3(2y

3
3 − 30y34)− y32(2y

3
2 + 14y34)− 20y64)

256x2
4y

7
4

,

R3
234 =

27y22
64x2

4y
2
4

, R4
234 =

27y22y
2
3

64x2
4y

4
4

, R1
323 =

9y1y
2
2y3

64x2
4y

4
4

, R2
323 =

9y3(y
3
2 − 8y34)

128x2
4y

4
4

,

R3
323 =

9y22y
2
3

128x2
4y

4
4

, R4
323 =

45y22y3
128x2

4y
3
4

, R2
324 =

27y23y
3
4

64x2
4y

5
4

, R4
324 =

−27y22y
2
3

64x2
4y

4
4

,

R2
334 =

−27y2y3y
3
4

64x2
4y

5
4

, R4
334 =

3y3(y
3
3(−3y32 + 4y34) + 5y34(4y

3
4 + 5y32)− 3y62)

256x2
4y

7
4

,

R3
423 =

−9y22
32x2

4y
2
4

, R3
424 =

27y22y3
64x2

4y
3
4

,

R2
424 =

−3(y33(4y
3
2 + 38y34) + 2y32(2y

3
2 + 11y34) + 10y62)

256x2
4y

6
4

, R2
432 =

−9y23
32x2

4y
2
4

,

R2
434 =

27y2y
2
3

64x2
4y

3
4

, R3
434 =

−34(y63 + 22y33y
3
4 + y32y

3
3 + 23y32y

3
4 − 3y62 + 10y64)

256x2
4y

6
4

.

Now, let X ∈ NR. The equation R(X, Y )Z = 0, ∀Y, Z ∈ H(TM), is written locally
in the form

XjRh
ijk = 0.

This is equivalent to the system of equations:

y2(5y
3
2 + 7y33 + 9y34)X

3 + 12y2y3X
4 = 0,

y23X
2 = 0,

y22X
3 = 0.

The above system has the solution X1 = t′1, t
′
1 ∈ R and X2 = X3 = X4 = 0. Thus,

X = t′1h1 and µR = 1. So, the dimension of NR = 1 and the dimension of NR = 2,
consequently, NR 6⊂ NR.

Nevertheless, we have some cases in which NR ⊂ NR as the case of Landesberg
spaces satisfying certain conditions.

Definition 4.6. [13] A Finsler space is called Landesberg if the second Cartan tensor
vanishes: C′ = 0 or, equivalently, if P = 0.

Theorem 4.7. Let (M,E) be a Landesberg space. If, for all X ∈ NR,
◦

DJZX ∈ NR,
then NR ⊂ NR and hence NR = NR.
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Proof. Let (M.E) be a Landesberg space. Then, using Lemma 3.5, we get

R(X, Y )Z =
◦

R(X, Y )Z + C(FR(X, Y ), Z).

LetX ∈ NR, by the above equation and the fact that
◦

R(X, Y )Z = (
◦

DJZR)(X, Y ) [15],

then, R(X, Y )Z = −R(
◦

DJZX, Y ). Since
◦

DJZX ∈ NR, ∀X ∈ NR, then R(X, Y )Z = 0
and then X ∈ NR. Consequently, NR ⊂ NR and hence NR = NR.

Theorem 4.8. Let µR be constant on an open subset U of TM . Then, the nullity
distribution z 7→ NR(z) is completely integrable on U .

Proof. To prove this theorem we have to show that if X, Y ∈ NR, then [X, Y ] ∈ NR.
So, let X, Y ∈ NR and Z ∈ H(TM). This implies that X and Y are horizontal and
X, Y ∈ NR. Then, by Lemma 3.7 (e), we have

SX,Y,Z{(DXR)(Y, Z)} = SX,Y,Z{P (X,FR(Y, Z))}.

Since X, Y ∈ NR, then R(X, Y ) = R(Y, Z) = R(Z,X) = 0. Making use of Lemma
4.1 and the fact that R is semi-basic and T (hX, hY ) = R(X, Y ), we have

0 = SX,Y,Z{(DXR)(Y, Z)}

= SX,Y,Z{DXR(Y, Z)− R(DXY, Z)− R(Y,DXZ)}

= −R(DXY, Z)−R(Z,DYX)

= R(DXY −DYX,Z)

= R([X, Y ] +R(X, Y ), Z)

= R([X, Y ], Z) +R(R(X.Y ), Z)

= R([X, Y ], Z), ∀Z ∈ H(TM).

It remains to show that [X, Y ] is horizontal. In fact, as R(X, Y ) = −v[hX, hY ]
[14], 0 = R(X, Y ) = −v[X, Y ], and hence [X, Y ] is horizontal. Hence, we have
[X, Y ] ∈ NR.

Remark 4.9. It should be noted that the nullity distribution NR of the curvature of
Barthel connection is completely integrable as has been proved in [14].

We have seen that if the index of nullity µR is constant, then the nullity distri-
bution NR is completely integrable. Then, according to the Frobenius theorem, there
exists a foliation of TM by µR(z)-dimensional maximal connected submanifolds which
are called the leaves, such that NR(z) is the tangent space to the leaf at z ∈ TM . In
this case we call the foliation induced by the nullity distribution the nullity foliation.

Theorem 4.10. The leaves of the nullity foliations of NR and NR are auto-parallel
submanifolds.

Proof. To prove that NR is auto-parallel with respect to Cartan connection, we have
to show that if X, Y ∈ NR, then DXY ∈ NR.

Let X, Y ∈ NR, then X, Y ∈ NR and X, Y ∈ H(TM). As Dh = 0, then
DXhY = hDXY , i.e., DXY ∈ H(TM). By Lemma 3.7 (e), we have

SX,Y,Z{(DXR)(Y, Z)} = 0.

12



Consequently
SX,Y,Z{R(DXY, Z)} = 0.

Hence R(DXY, Z) = 0 ∀Z ∈ X(TM) and DXY ∈ NR.

Similarly, we show that if X, Y ∈ NR, then DXY ∈ NR. By Lemma 3.7 (d), we
have

SX,Y,Z{(DXR)(Y, Z)} = SX,Y,ZC{(FR(X, Y ), Z)}.

Since X, Y ∈ NR, then
SX,Y,Z{(DXR)(Y, Z)} = 0.

Consequently, R(DXY, Z) = 0 ∀Z ∈ X(TM) and DXY ∈ NR.

It is well known that the concepts of auto-parallel submanifold and totally geodesic
submanifold coincide in Riemannian geometry [11]. This is not true, in general. How-
ever, every auto-parallel submanifold is totally geodesic [5]. So, we have the following
corollary.

Corollary 4.11. The leaves of the nullity foliations NR and NR are totally geodesic
submanifolds.

Definition 4.12. [1], [16] A Finsler space (M,E), where dimM ≥ 3, is said to be
h-isotropic if there exists a scalar function ko such that the h-curvature tensor R of
Cartan connection has the form

R(X, Y )Z = ko{g(X,Z)Y − g(Y, Z)X}, ∀X, Y, Z ∈ X(TM).

Theorem 4.13. For an h-isotropic Finsler space, the index of nullity µR takes its
maximal value, i.e. µR = n.

Proof. Let X be a non zero nullity vector in NR and Y, Z,W ∈ X(TM). Then, by
Definition 4.12, we have

0 = ko{g(X,Z)Y − g(Y, Z)X}

= ko{g(g(X,Z)Y,W )− g(g(Y, Z)X,W )}

= ko{g(Y,W )g(X,Z)− g(X,W )g(Y, Z)}.

As g is a metric on TM , its trace is thus 2n. Taking the trace with respect to the
pair Y and W , we get

ko{2ng(X,Z)− g(X,Z)} = 0,

Again, taking the trace of the above equation, we have

2n(2n− 1)ko = 0.

which gives ko = 0. Consequently, R = 0 and hence µR = n.

Definition 4.14. [13], [16] A Finsler space (M,E), is said to be Berwald space if

the hv-curvature tensor
◦

P of Berwald connection vanishes or, equivalently, DhXC = 0
for all X ∈ X(TM).

13



Theorem 4.15. For a Berwald space, the index of nullity µR of NR takes its maximal
value if and only if the index of nullity µR of NR takes its maximal value.

Proof. Let (M,E) be a Berwald space and so C′ = 0 [13]. Hence, by Lemma 3.5 (a),
the h-curvature of Cartan connection is written in the form

R(X, Y )Z =
◦

R(X, Y )Z + C(FR(X, Y ), Z). (4.1)

Now, let µR = n. Then R = 0, which is equivalent to
◦

R = 0 [15]. Thus, Equation
(4.1) yields R = 0. Consequently, µR = n.

Conversely, let µR = n. Hence, by (4.1),
◦

R(X, Y )Z + C(Z, FR(X, Y )) = 0.

Setting Z = S in this equation, we have
◦

R(X, Y )S = 0. But
◦

R(X, Y )S = R(X, Y )
[15]. Thus, R = 0, consequently, µR = n.

5. Nullity distribution of Cartan hv-curvature

In this section, we study the nullity distribution of the hv-curvature of Cartan
connection. We show that the nullity distribution NP of the hv-curvature P is not
completely integrable. We impose a certain condition to make NP completely inte-
grable. We present a class of Finsler spaces which guarantees the possibility of such
a condition.

Definition 5.1. Let P be the hv-curvature of Cartan connection. The nullity space
of P at a point z ∈ TM is the subspace of Hz(TM) defined by

NP (z) := {X ∈ Hz(TM) : P (X, Y ) = 0, ∀Y ∈ TzTM}.

The dimension of NP (z), denoted by µP (z), is the index of nullity of P at z.

Proposition 5.2. The nullity distribution of P has the following properties:

(a) NP 6= φ.

(b) S ∈ NP .

(c) If X ∈ NP (z), then C′(X, Y ) = 0, ∀Y ∈ TzTM.

(d) If X, Y ∈ NP ∩NR, then R(X, Y )Z = C′([X, Y ], Z).

Proof.
(b) Follows from the fact that P (S,X)Y = P (X,S)Y = 0 (Lemma 3.6).

(c) Let X ∈ NP (z),

X ∈ NP (z) =⇒ P (X, Y )Z = 0 ∀Y, Z ∈ TzTM

=⇒ P (X, Y )S = 0 ∀Y ∈ TzTM

=⇒ C′(X, Y ) = 0 ∀Y ∈ TzTM.
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(d) Let X , Y ∈ NP ∩ NR. Then, by Proposition 5.2 (c), Lemma 3.5 (a) and the

identity
◦

R(X, Y )Z = (
◦

DJZR)(X, Y ) [15], we have

R(X, Y )Z = (DhXC
′)(Y, Z)− (DhY C

′)(X,Z).

By Lemma 4.1 (c) and the fact that C′ is semi-basic, we get

R(X, Y )Z = C′([hX, hY ], Z).

Hence, the result follows.

Theorem 5.3. For a Landesberg space, the nullity distributions NR andNR◦ coincide,

where NR◦ is the nullity distribution of the h-curvature
◦

R of Berwald connection.

Proof. Let (M,E) be a Landesberg space. Then, the hv-curvature P of Cartan con-
nection vanishes and thus NP = H(TM). Consequently, C′ = 0, by Proposition
5.2 (c). Hence, by Lemma 3.5 (a), we get

R(X, Y )Z =
◦

R(X, Y )Z + C(FR(X, Y ), Z).

Let X ∈ NR, then X ∈ NR and thus R(X, Y ) = 0, hence, X ∈ NR◦ . Consequently,
NR ⊆ NR◦ . Conversely, let X ∈ NR◦ , then X ∈ NR [15] and thus R(X, Y ) = 0,
hence, X ∈ NR. Consequently, NR◦ ⊆ NR.

The nullity distribution NP is not in general completely integrable as shown by
the following example.

Example 5.4. Let M = {x = (x1, x2, x3) ∈ R
3 : x2 6= 0},

U = {(x, y) ∈ R
3 × R

3 : x2 6= 0; y1, y2 6= 0} ⊂ TM .
Let the energy function E be defined on U by: E = e−x1(e−x1x3y21y3 + x2y

3
2)

2/3.

For simplicity, let σ1 := e−x1x3y21y3 + x2y
3
2, σ2 := 7e−x1x3y21y3 + 12x2y

3
2 and

σ3 := ex1x3(5e−x1x3y21y3 + 3x2y
3
2). Then, the non-vanishing components P h

ijk of the
hv-curvature tensor P are:

P 1
111 =

−3x2y
3
2

32y1σ1

, P 2
111 =

−y2σ2

32y21σ1

, P 3
111 =

−9x2y
3
2y3

32y21σ1

, P 1
112 =

3x2y
2
2

32σ1

= P 1
121,

P 2
112 =

σ2

32y1σ1

= P 2
121, P 3

112 =
9x2y

2
2y3

32y1σ1

= P 3
121, P 1

122 =
−3x2y1y2

32σ1

,

P 2
122 =

−σ2

32y2σ1
, P 3

122 =
−x2y2y3

32σ1
, P 1

211 =
3x2y

2
2

32σ1
, P 2

211 =
x2y

3
2

16y1σ1
,

P 3
211 =

3x2y
2
2σ3

16y31σ1

, P 1
221 =

−3x2y1y2

32σ1

= P 1
212, P 2

221 =
−3x2y

2
2

16σ1

= P 2
212,

P 3
221 =

−3x2y2

16y21σ1
= P 3

212, P 1
222 =

3x2y
2
1

32σ1
, P 2

222 =
3x2y1y2

16σ1
, P 3

222 =
3x2σ3

16σ1
,

P 2
311 =

y1y2e
−x1x3

32σ1
, P 3

311 =
−3x2y

3
2

32y1σ1
, P 2

312 =
−x2y

2
1e

−x1x3

32y31σ1
= P 2

321,
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P 3
312 =

3x2y
2
2

32σ1
= P 3

321, P 2
322 =

y31e
−x1x3

32y2σ1
, P 3

322 =
−3x2y1y2

32σ1
.

Now, let X ∈ NP . The equation P (X, Y )Z = 0, ∀ Y, Z ∈ H(TM), is written locally

in the form
XjP h

ijk = 0.

This yields the system of equations

y2X
1 − y1X

2 = 0.

Thus, the solution of the above system is X1 = t1, X
2 = y2

y1
t1 and X3 = t3, t1, t3 ∈ R.

Hence, X = t1(h1 +
y2
y1
h2) + t3h3 and µP = 2. Now, let X, Y ∈ NP be such that

X = h1 +
y2
y1
h2 and Y = h3. By simple calculations, the bracket [X, Y ] = [h1 +

y2
y1
h2, h3] = −1

2
y1

∂
∂y1

+ y3
∂

∂y3
, which is vertical. Consequently, the nullity distribution

NP is not complectly integrable.

Nevertheless, we have

Theorem 5.5. Let µP be constant on an open subset U of TM . The nullity distribu-
tion NP is completely integrable on U if and only if, for all X, Y ∈ NP , R(X, Y ) = 0
and (DJZR)(X, Y ) = R(Y, FC(X,Z))− R(X,FC(Y, Z)).

Proof. Let X, Y ∈ NP . Then, R(X, Y ) = 0 and (DJZR)(X, Y ) = R(Y, FC(X,Z))−
R(X,FC(Y, Z)), ∀Z ∈ X(TM). As R(X, Y ) = 0, then the bracket [hX, hY ] is
horizontal. Making use of Lemma 3.7 (f) and Lemma 4.1 (c), we get

(DhXP )(Y, Z)− (DhY P )(X,Z) = 0 =⇒ P (DXY −DYX,Z) = 0

=⇒ P ([X, Y ] +R(X, Y ), Z) = 0

=⇒ P ([X, Y ], Z) = 0

=⇒ [X, Y ] ∈ NP .

Hence NP be completely integrable.
Conversely, let NP be completely integrable. Then, if X, Y ∈ NP , the bracket

[hX, hY ] is horizontal, thus, R(X, Y ) = 0. Also, by Lemma 3.7 (f) and the fact
P ([hX, hY ], Z) = (DhXP )(Y, Z) − (DhY P )(X,Z) = 0, we have (DJZR)(X, Y ) =
R(Y, FC(X,Z))− R(X,FC(Y, Z)), ∀X, Y ∈ NP , ∀Z ∈ X(TM).

Remark 5.6. The class of Finsler spaces with vanishing h-curvature satisfy the con-
ditions of Theorem 5.5. Consequently, for such spaces, NP is completely integrable.

Moreover, we have

Proposition 5.7. A sufficient condition for NP to be completely integrable is that

NP ⊂ NR.

Proof. Let NP ⊂ NR and X, Y ∈ NP , Z ∈ X(TM). Then, X, Y ∈ NR and
hence X, Y ∈ NR, consequently, R(X, Y ) = 0. Also, by Lemma 3.7 (f), we have
(DJZR)(X, Y ) = R(Y, FC(X,Z)) − R(X,FC(Y, Z)), ∀X, Y ∈ NP , ∀Z ∈ X(TM).
Hence, by Theorem 5.5, NP is completely integrable.
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6. Nullity distribution of Cartan v-curvature

In this section, we study the nullity distribution of the v-curvature Q of Cartan
connection. The nullity distribution of Q is defined in a similar manner as that of R
(Definition 4.3 )

Proposition 6.1. The nullity distribution of Q satisfies:

(a) NQ 6= φ.

(b) S ∈ NQ.

(c) If Z ∈ NQ, then Q(X, Y )Z = 0, ∀X, Y ∈ X(TM).
That is, Q(X, Y )Z vanishes whenever X, Y or Z is a Q-nullity vector field.

(d) If X, Y ∈ NQ(z), then F [JX, JY ] ∈ NQ.

Proof.
(b) Follows from the fact that Q(S,X)Y = 0. (Lemma 3.6 (d))
(c) Follows from Lemma 3.7 (b).
(d) Let X, Y ∈ NQ, then Propositions 6.1 and Lemma 3.7 (h) lead to

0 = (DJXQ)(Y, Z) + (DJYQ)(Z,X) + (DJZQ)(X, Y )

= −Q(DJXY, Z)−Q(Z,DJYX)

= Q(DJYX −DJXY, Z)

= Q(F [JX, JY ], Z).

Since [JX, JY ] is vertical and FJ = h, hence F [JX, JY ] is horizontal. Consequently,
F [JX, JY ] ∈ NQ.

The nullity distribution NQ is not in general completely integrable as shown by
the following example.

Let E = x4y1(y
3
2 + y33 + y34)

1/3. Then, we have:

Example 6.2. M = {x = (x1, x2, x3, x4) ∈ R
4 : x2 6= 0},

U = {(x, y) ∈ R
4 × R

4 : x2 6= 0; y1, y3, y4 6= 0} ⊂ TM .
Let the energy function E be defined on U by E = x2y

2
1e

−y3/y4 + y22.

Then, the independent non-vanishing components of the v-curvature Qh
ijk of Car-

tan connection are:

Q3
113 =

−y3

2y21y4
, Q4

113 =
−1

2y21
, Q3

114 =
y23

2y21y
2
4

, Q4
114 =

y3

2y21y4
,

Q3
134 =

−y3

2y1y24
, Q4

134 =
−1

2y1y4
, Q3

313 =
−1

2y1y4
, Q1

314 =
y3

4y34
,

Q1
331 =

−1

4y24
, Q1

334 =
−y1

4y34
, Q3

334 =
−1

2y21
, Q3

341 =
−y3

2y21y4
,

Q1
413 =

y3

4y34
, , Q3

413 =
y3

y1y
2
4

, Q1
414 =

−y23
4y44

, Q3
414 =

−y3

y1y
2
4

,
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Q4
414 =

−y3

2y1y24
, Q4

413 =
1

2y21y4
, Q4

423 =
1

2y1y4
, Q1

434 =
y1y3

4y44
, Q3

434 =
y3

y34
.

Now, let X ∈ NQ, the equation Q(X, Y )Z = 0, ∀Y, Z ∈ H(TM), is written locally
in the form

XjQh
ijk = 0.

This is equivalent to the system of equations:

y4X
3 − y3X

4 = 0,

y4X
1 − y1X

4 = 0,

y3X
1 − y1X

3 = 0.

From the above system, we have X2 = t, X4 = t′, X1 = y1
y4
t′, X3 = y3

y4
t′, t, t′ ∈ R.

Hence, X = th2 + t′(y1
y4
h1 +

y3
y4
h3 + h4) and µQ = 2. Now, let X, Y ∈ NQ be such that

X = h2 and Y = y1
y4
h1+

y3
y4
h3+h4. Then, the bracket [X, Y ] = [h2,

y1
y4
h1+

y3
y4
h3+h4] =

− y1y2
2x2

2
y4

∂
∂y1

+
y2
1
(5y3−2y4)

4x2y24
e−y3/y4 ∂

∂y2
+ y4

2x2

2

∂
∂y4

, which is vertical. Consequently, the nullity

distribution NQ is not complectly integrable.

Nevertheless, we have

Theorem 6.3. Let µQ be constant on an open subset U of TM . The nullity distribu-
tion NQ is completely integrable on U if and only if, for all X, Y ∈ NQ, R(X, Y ) = 0
and the tensor

A(X, Y, Z) := P (FC(Z,X), Y )− (DJXP )(Y, Z)− (DJZP )(X, Y ), ∀Z ∈ X(TM)

is symmetric in X and Y .

Proof. Let X, Y ∈ NQ. Then, R(X, Y ) = 0 and the tensor A(X, Y, Z) is symmetric
in the first two arguments. By Lemma 3.7 (g), we have

(DhXQ)(Y, Z) = (DJY P )(X,Z)− (DJZP )(X, Y ) + P (FC(X, Y ), Z)

−P (FC(Z,X), Y )−Q(FC′(X, Y ), Z). (6.1)

Interchange X with Y in the above equation, we get

(DhYQ)(X,Z) = (DJXP )(Y, Z)− (DJZP )(Y,X) + P (FC(Y,X), Z)

−P (FC(Z, Y ), X)−Q(FC′(Y,X), Z). (6.2)

Making use of the symmetry of C and C′, Equations (6.1) and (6.2) give

(DhXQ)(Y, Z)− (DhYQ)(X,Z) = A(X, Y, Z)− A(Y,X, Z). (6.3)

Then, by the symmetry of A(X, Y, Z) in X , Y , we get

Q(DhYX −DhXY, Z) = 0.

Consequently, it follows from Lemma 4.1 that

Q([X, Y ] +R(X, Y ), Z) = 0.
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Since R(X, Y ) = 0, [hX, hY ] = [X, Y ] is horizontal and so [X, Y ] ∈ NQ. Conse-
quently, NQ(z) is completely integrable.

Conversely, letNQ be completely integrable. Then, for allX, Y ∈ NQ, the bracket
[hX, hY ] ∈ NQ, i.e., [hX, hY ] is horizontal and hence R(X, Y ) = 0. Moreover, by
(6.3) and the fact that Q([hX, hY ], Z) = 0, the tensor A(X, Y, Z) is symmetric in X

and Y .

Remark 6.4. The class of Minkoweski spaces satisfies the conditions of the above
theorem. Consequently, a Minkoweski space has a completely integrable NQ.

Definition 6.5. Let (M,E) be a Finsler manifold. The angular metric ~ on TM is
defined by

~(X, Y ) = g(X, Y )− ℓ(X)ℓ(Y ),

where g is the metric tensor on TM given by (3.2) and ℓ(X) := 1√
2E

g(X,C).

It should be noted that the trace of ~ is (2n− 1).

Definition 6.6. A Finsler space (M,E) of dim ≥ 4 is said to be S3-like if

Q(X, Y, Z,W ) = r{~(JX, JZ)~(JY, JW )− ~(JX, JW )~(JY, JZ)},

where Q(X, Y, Z,W ) = g(Q(X, Y )Z, JW ) and r is a scalar function.

Theorem 6.7. Let (M,E) be an S3-like space. Then, the index of nullity µQ takes
its maximal value.

Proof. Let (M,E) be an S3-like space and X ∈ NQ, then we have

r{~(JX, JZ)~(JY, JW )− ~(JX, JW )~(JY, JZ)} = 0.

Taking the trace with respect to JX and JZ , we get

(2n− 2)r~(JY, JW ) = 0.

Again, taking the trace of the above equation, we have

(2n− 1)(n− 1)r = 0.

As n ≥ 4, then r = 0 and consequently Q = 0.
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[5] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Paris, Gauthier-
Villars, 1928; 2nd. Ed., 1946.

[6] S. S. Chern and N. H. Kuiper, On some theorems on isometric imbedding of
compact Riemann manifolds in Euclidean space, Ann. Math., 56 (1952), 313-
316.
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